Racjonalista - Strona głównaDo treści


Fundusz Racjonalisty

Wesprzyj nas..
Zarejestrowaliśmy
199.416.117 wizyt
Ponad 1065 autorów napisało dla nas 7364 tekstów. Zajęłyby one 29017 stron A4

Wyszukaj na stronach:

Kryteria szczegółowe

Najnowsze strony..
Archiwum streszczeń..

 Czy konflikt w Gazie skończy się w 2024?
Raczej tak
Chyba tak
Nie wiem
Chyba nie
Raczej nie
  

Oddano 217 głosów.
Chcesz wiedzieć więcej?
Zamów dobrą książkę.
Propozycje Racjonalisty:

Złota myśl Racjonalisty:
"Nie wierzymy mediom. Media "zakręcają się na prawo". Prezenterzy i dziennikarze widocznie mają jeszcze usta pełne wadowickich kremówek, dlatego nie stać ich na obiektywizm i prawdę."
Nowinki i ciekawostki naukowe
Materiałoznawstwo
Rośnie gdy nie powinien: Odkryto materiał o wyjątkowej ujemnej ściśliwości (07-09-2016)

Intuicja podpowiada, że próbka materiału ściskana jednorodnie ze wszystkich stron powinna zmniejszać swoje rozmiary. Tylko nieliczne materiały poddane ściskaniu hydrostatycznemu wykazują odwrotne zachowanie: nieznacznie się poszerzają w jednym lub dwóch kierunkach. W Instytucie Chemii Fizycznej Polskiej Akademii Nauk w Warszawie odkryto materiał o wyjątkowo dużej ujemnej ściśliwości i dotychczas nieznanym mechanizmie za nią odpowiedzialnym.

Gdy coś ściskamy, zwykle oczekujemy, że będzie się kurczyć, zwłaszcza wtedy, gdy wywierane ciśnienie działa jednorodnie ze wszystkich stron. Znane są jednak materiały, które pod wpływem ciśnienia hydrostatycznego wydłużają się nieznacznie w jednym lub dwóch kierunkach. W trakcie poszukiwań optymalnych związków do magazynowania wodoru w Instytucie Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) w Warszawie dokonano przypadkowego, lecz bardzo ciekawego odkrycia: podczas zwiększania ciśnienia jeden z badanych materiałów nagle znacząco się wydłużył.

"Zwykle wzrost rozmiarów, obserwowany w materiałach o ujemnej ściśliwości poddawanych dużemu ciśnieniu hydrostatycznemu, jest niewielki. Mówimy tu o wartościach rzędu pojedynczego procenta lub nawet mniejszych. My znaleźliśmy materiał o bardzo dużej ujemnej ściśliwości, w jednym z kierunków dochodzącej do 10%. Co ciekawe, do wydłużenia dochodziło skokowo, przy ciśnieniu ok. 30 tys. atmosfer", mówi dr Taras Palasyuk (IChF PAN).

Dr Palasyuk zajmuje się w Instytucie Chemii Fizycznej PAN badaniami materiałów poddawanych ciśnieniom hydrostatycznym o wartościach od jednej do kilku milionów atmosfer (przedrostek hydro- oznacza, że ciśnienie działa na materiał ze wszystkich stron). Tak duże ciśnienia wytwarza się w laboratoriach między kowadełkami diamentowymi, między którymi umieszcza się próbkę o rozmiarach rzędu mikrometrów. Próbka znajduje się w uszczelce gwarantującej, że wytworzone ciśnienie będzie oddziaływało na badany materiał jednorodnie z każdego kierunku. Aby doprowadzić do wzrostu ciśnienia, kowadełka ściska się za pomocą odpowiedniej śruby. W charakterze miernika ciśnienia jest używany kryształek rubinu, umieszczony obok próbki. Zmienia on swój sposób świecenia w zależności od wartości działającego nań ciśnienia.

Objętość próbek materiałowych wystawionych na działanie rosnącego ciśnienia maleje, co wiąże się z redukcją zazwyczaj wszystkich rozmiarów przestrzennych. Znane są jednak nietypowe materiały krystaliczne, których objętość podczas ściskania co prawda się zmniejsza - bo zgodnie z termodynamiką musi - ale jednocześnie w jednym lub dwóch kierunkach kryształ się wydłuża. Mechanizm odpowiedzialny za takie wydłużanie miał zawsze podłoże geometryczne: pod wpływem ciśnienia poszczególne elementy struktury krystalicznej po prostu przesuwały względem siebie w różnym stopniu w różnych kierunkach.

"W naszym laboratorium za pomocą światła laserowego analizujemy, jak zmieniają się sposoby drgań cząsteczek w krysztale wraz ze wzrostem ciśnienia i na tej podstawie wyciągamy wnioski o strukturze materiału. Szybko odkryliśmy, że w badanym przez nas krysztale - był nim amidoboran sodu - wydłużenia nie da się wytłumaczyć samą zmianą geometrii", mówi doktorantka Ewelina Magos-Palasyuk, główna autorka publikacji w czasopiśmie "Scientific Reports".

Amidoboran sodu to stosunkowo łatwo dostępny związek o wzorze chemicznym Na(NH2BH3), tworzący przezroczyste kryształy o budowie ortorombowej. Wyniki badań kryształów tego związku, otrzymane w IChF PAN dzięki spektroskopii ramanowskiej, skonfrontowano z przewidywaniami modelu teoretycznego. Okazało się, że ujemna ściśliwość kryształów amidobranu sodu musi być konsekwencją wydłużania się wiązań chemicznych między azotem a wodorem oraz borem i azotem, spowodowanego gwałtownym formowaniem się nowych wiązań wodorowych między sąsiednimi cząsteczkami w krysztale.

"Amidoboran sodu jest więc pierwszym znanym nam materiałem, w którym ujemna ściśliwość ma charakter przede wszystkim chemiczny", mówi dr Taras Palasyuk i podkreśla, że w przeciwieństwie do innych materiałów, które pod wpływem dużego ciśnienia zazwyczaj zmieniały symetrie struktury krystalicznej, w amidoboranie sodu nie dochodzi do żadnych drastycznych zmian. "Nasze wstępne wyniki, otrzymane za pomocą dyfrakcji rentgenowskiej w ośrodku badań synchrotronowych National Synchrotron Radiation Research Center na Tajwanie, także potwierdzają, że materiał zachowuje swoją pierwotną symetrię. To właśnie dlatego, że nie musi się przebudowywać, do zwiększenia rozmiarów liniowych kryształu dochodzi tu w tak gwałtowny sposób".


Materiał o dużej ujemnej ściśliwości można wykorzystać do ulepszenia kamizelek kuloodpornych. Zdjęcie dzięki uprzejmości Wydziału Inżynierii Materiałowej Politechniki Warszawskiej oraz militaria.pl. (Źródło: IChF PAN, Grzegorz Krzyżewski)

Odkrycie dotychczas nieznanego mechanizmu odpowiedzialnego za ujemną ściśliwość otwiera ciekawe kierunki poszukiwań nowych materiałów o podobnie egzotycznych właściwościach fizycznych. O pierwszych zastosowaniach można jednak myśleć już teraz. Znaczny, skokowy i odwracalny wzrost długości kryształów amidoboranu sodu przy ściśle określonej wartości ciśnienia czyni ten materiał interesującym kandydatem np. na elementy detektorów wykrywających ustaloną wartość graniczną ciśnienia, wynoszącą ok. 30 tys. atmosfer (w przemyśle stosuje się ciśnienia dochodzące nawet do 300 tys. atmosfer). Innym potencjalnym zastosowaniem amidoboranu sodu mogłyby być aktywne kamizelki kuloodporne, pod wpływem gwałtownego wzrostu ciśnienia wywołanego uderzeniem pocisku zachowujące się nieco podobnie jak poduszki powietrzne w samochodzie.

Amidoboran sodu użyty do prac w IChF PAN był wytwarzany na Wydziale Chemii Uniwersytetu Warszawskiego. Badania sfinansowano z grantów HARMONIA i PRELUDIUM Narodowego Centrum Nauki.

"Chemically driven negative linear compressibility in sodium amidoborane, Na(NH2BH3)"; E. Magos-Palasyuk, K. J. Fijałkowski, T. Palasyuk; Scientific Reports 6, 28745 (2016); DOI: 10.1038/srep28745

Instytut Chemii Fizycznej Polskiej Akademii Nauk


Dodaj komentarz do wiadomości..

Nauka - sondaż Racjonalisty

 Neuroenhancement, czyli chemiczne wspomaganie pracy mózgu to:
sposób na optymalne wykorzystanie ludzkiego potencjału
pożyteczna dziedzina badań naukowych
kolejny krok ku dehumanizacji człowieka
chwyt marketingowy przemysłu farmaceutycznego
zwykła życiowa konieczność
nie mam zdania
  

Oddano 26222 głosów.


Reklama

Racjonalista wspiera naukę. Dołącz do naszych drużyn klikając na banner!
 
 
 
Więcej informacji znajdziesz TUTAJ
[ Regulamin publikacji ] [ Bannery ] [ Mapa portalu ] [ Reklama ] [ Sklep ] [ Zarejestruj się ] [ Kontakt ]
Racjonalista © Copyright 2000-2018 (e-mail: redakcja | administrator)
Fundacja Wolnej Myśli, konto bankowe 101140 2017 0000 4002 1048 6365